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Project  Goals & 2006 Technology Roadmap

Theme:  Particle Size Distribution (PSD)

1. Continuum Theory for the Solid Phase

2. Improved Gas-Particle Drag Laws

3. Gas-Phase Instabilities:  Turbulence Models 

4. Data Collection and Model Validation 

5. Project Management  
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Development

Physical and

Computational 

Experiments

Communication,
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Education

Relevant Tracks in 2006

Technology Roadmap



Project Scope:  Work Breakdown Structure

 Development, Verification, and Validation of Multiphase Models for Polydisperse Flows

Theory

Development

Data

Collection

Model

Validation

Program

Management
Deliverables

1. Solid-Phase

Continuum

Theory

2. Gas-Solid

Drag

3. Gas-Phase

Turbulence

Simulations

Experiments

4.1 DEM (solids)

4.2 Eulerian-DEM

      (gas-solid)

4.3 Low-velocity

      fluidized bed

4.4 Cluster Probe

      Development

1.1 Kinetic Theory

1.2 DQMOM

1.3 Incorporation of

      KT and DQMOM

      into MFIX

1.4 KT extension

      to multiphase

2.1 LBM/DTIBM:

      zero-mean vel.

2.2 LBM/DTIBM:

      non-zero rel. vel.

2.3 LBM/DTIBM:

      freely evolving

3.1 Polydisperse DNS

3.2 Multiphase Turb. Model

4.5 High-velocity

      fluidized bed (PSRI)

4.6.1 Compare with

         DEM data (4.1) and

         low-velocity bed (4.3)

4.6.2 Liaison to NETL

         riser data

4.6.3 Compare with high-

         velocity data from

         Eulerian-DEM (4.2),

         PSRI (4.5), and

         NETL (4.6.2)

5.1 Develop

Management Plan
Monthly email updates

Quarterly reports

Annual reports

Final report

Approach

Scope

Cost Estimates

Schedule

Risk

Constraints

Assumptions

Communication

New theory into MFIX

Project Web Site:

http://www.psriextra.com/AR_ 

Polydispersity_Open/AR_Polydispersity_Open/Welcome.html 



Experimental Setups

Colorado Bubbling Bed / “Dilute” CFB

 

PSRI “Dense” CFB



Particles

Colorado:   sand

PSRI:  glass beads and HDPE pellets

• Group B

• monodisperse, binary & continuous PSD’s

HDPE

dave= 650 μm

ρp = 900 kg/m3

Glass

dave = 170 μm

ρp = 2500 kg/m3



Experimental Measurements

Bubbling Bed (Colorado)

• Axial segregation:  

vacuum slice, sieve, and weigh

• Bubble frequency, velocity & size:  

optical dual-fiber probe

CFB (Colorado & PSRI)

• Species flux:  extraction probe

• Cluster freq., duration, & appear. prob.: optical fiber probe



Comprehensive set of polydisperse data…
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Bubbling Bed:  Segregation and Bubbling

scont= 1  perfect segregation
scont= 0  perfect mixing

• As distribution width   , segregation    then      (binary:  monotonic     )

• As distribution width   , all bubble characteristics 

• Explanation:  segregation level tied to thickness of bubble-less layer

lognormal PSD lognormal PSD



CFB: Axial Segregation

h
 /

 H
Binary Mixture Continuous PSD

Binary: As height   , % of massive    at some locations  

Continuous:    As height   , % of massive    at all locations 



CFB:  Cluster Frequency

• Axial position has large influence on profile

• Binary composition and continuous PSD width have impact at high h/H



CFB:  Elutriation
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Trends of binary and continuous appear similar, but x-axes are different…

elutriation 

fines comp. 



CFB:  Elutriation w/ same x-axes

mass % of fine mass % of fine mass % of fine

B
in

a
ry

 M
ix

tu
re

C
o
n

ti
n

u
o

u
s

P
S

D

• Elutriation trends of binary and continuous PSD’s are in stark contrast

• Explanation:  as continuous width    (mass % of fines    ), dfine and elutriation easier

dsm increases



Aside:  How well do kinetic theories predict continuous PSD‟s?

Basic Idea: How to accurately represent a continuous PSD using the 

transport coefficients for „s‟ discrete species.

d1 d2

d1 d2 d3

d1 dn…
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s=2  

σ1=? σ2=?

φ 1=? φ 2=?
Q1: What method do we choose to find σ‟s 

and φi‟s for given φ?

A1: moment-based method
s=3  

σ1=? σ2=? σ3=?

φ 1=? φ 2=? φ 3=?
Q2: What value of „s‟ is required for 

„accurate‟  representation of 

continuous PSD?

A2:  “collapsing” of transport coefficients 

from new kinetic theory 

(Garzo, Hrenya & Dufty, PRE, 2007)



Preliminary Answer…

Distributions investigated

• Lognormal ( /dave = 90%)

• NETL coal

• NASA lunar simulant (OB-1)

Comparison with  MD data of 

Dahl et al (Powder Tech, 2003)

• Simple shear flow

• Discrete approximation with 3 

particles  (s=3) provides similar 

accuracy as monodisperse theory



Summary

• Binary and continuous PSD’s display different 

qualitative trends

 bubbling bed:  axial segregation

 CFB:  axial segregation, elutriation

• Preliminary work indicates discrete kinetic theory can 

approximate well a continuous PSD with a fairly small 

number of size species


